Outline

Input -Output representation of $\mathbf{D}-\mathrm{T}$ systems examples. General class of systems.

Input -output representation of $\mathbf{D}-\mathrm{T}$ systems examples:
a- $\quad N$ - point \mathbb{I} IA average filter:
MA average filter can be expressed by the following equation:

$$
y[n]=\frac{1}{N}[x[n]+x[n-1]+\ldots+x[n-N+1]]=\frac{1}{N} \sum_{k=o}^{N-1} x[n-k]
$$

where N is a positive integer, $y[n]$ is the output signal in time domain and $\boldsymbol{x}[\boldsymbol{n}]$ is the input signal in time domain.
Using this equation, we can generalize it to represent a large class of causal LTI system, as shown in the following modified equation:

$$
y[n]=w_{0} x[n]+w_{1} x[n-1]+w_{2} x[n-2] \ldots+w_{N-1} x[n-N+1]=\sum_{k=o}^{N-1} w_{k} x[n-k]
$$

In this case, we use for each sample some w_{k} that called the weight (the percentage of the participation for the given sample in given n sample output).
$\boldsymbol{w}_{\boldsymbol{k}} \Rightarrow\left(\boldsymbol{w}_{\mathbf{1}}, \boldsymbol{w}_{\mathbf{2}}, \ldots, \boldsymbol{w}_{N-1}\right)$ are real numbers of the linear combination
If all weights are equal to $\frac{1}{N}$, we get equation for MA
Filter
b- Exponentially Weighted Moving Average (EWMAA) Filter:
Using the general form, the N-point EWMA filter defined by:

$$
y[n]=\sum_{k=o}^{N-1} a\left(b^{k} x[n-k]\right)
$$

Where
\boldsymbol{b} is a real number within the range : $\mathbf{0}<\boldsymbol{b}<\mathbf{1}$.
\boldsymbol{a} is a positive number that equals: $a=\frac{1-\boldsymbol{b}}{1-b^{N}}$

> If $b=\mathbf{0}$, then $\boldsymbol{a}=\mathbf{1}$ and the equation reduced to $y[n]=x[n]$ This means that no filtering process of the input signal

According to the previous section, the weights of EWMA filter will be defined as the following
$\boldsymbol{w}_{\boldsymbol{k}}=\boldsymbol{a} \boldsymbol{b}^{\boldsymbol{k}}, \boldsymbol{k}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{N}-\mathbf{1}$. (Note that these weights are exponentially based weights and they are decrease in values as \boldsymbol{k} increase in value).

If $N=5 ; \quad b=0.7$ then $a=\frac{1-0.7}{1-0.7^{5}}=\frac{0.3}{0.832}=0.3606$

$$
\begin{aligned}
& w_{0}=a=0.3606 \\
& w_{1}=a b=0.2524
\end{aligned}
$$

And using $w_{k}=a b^{k} \Rightarrow \quad w_{2}=a b^{2}=0.1767 \quad \Rightarrow$

$$
\begin{aligned}
& w^{3}=a b^{3}=0.1237 \\
& w_{4}=a b^{4}=0.0866
\end{aligned}
$$

$$
y[n]=0.3606 x[n]+0.2524 x[n-1]+0.1767 x[n-2]+0.1237 x[n-3]+0.0866 x[n-4]
$$

In EWMA filter, a larger weight is given to the more recent samples of the input during the computation of the output $\boldsymbol{y}[\boldsymbol{n}]$, and in MA filter, all the samples have the same weight.

$$
y[n]=0.2 \times[n]+0.2 x[n-1]+0.2 x[n-2]+0.2 x[n-3]+0.2 x[n-4]
$$

General class of systems

General class of system is given by replacement the upper index $N \mathbf{- 1}$ in the summation with n as follows

$$
y[n]=\sum_{k=o}^{n} w_{k} x[n-k], \quad n \geq 0
$$

Using this equation we can express any causal LTI D-T system with input $\boldsymbol{x}[\boldsymbol{n}]=\mathbf{0}$, for all $\boldsymbol{n}<\mathbf{0}$
Matlab example:

```
%MAandEWMA.m script program.
%plot the values of N-point MA Filter and
%the values of N-point EWMA Filter
%Use 'input' matlab command to control the input of the length
%of the two filters (N), the parameter B.
% B must be 0 < B < 1, this condition must be validate
% Get the input from the user
N = input('Please, enter the length for MA and EWMA Filters');
B = input ('Please, enter the value for B, O < B < 1');
if (B <= 0 | B>=1)
    error('B must be greater than O and less than 1');
end
% MA Filter coefficients generation
n = 0:N-1;
MAW = (1/N) *ones(size(n));
subplot(2,1,1);
stem(n,MAW,'filled');
title('Impulse Response of MA filter');
xlabel('samples');
ylabel('MA Coefficients');
axis auto;
% EWMA Filter coefficients generation
A = (1-B)/(1-B^N);
```

EWMAW $=\mathrm{A} * \mathrm{~B} \cdot{ }^{\wedge} \mathrm{n}$; \%EWMA Coefficients
subplot (2,1,2);
stem(n, EWMAW, 'filled');
title('Impulse Response of EWMA Filter ');
xlabel ('samples');
ylabel ('EWMA Coefficients');
axis auto

The run of MAandEWMA.m script program will be the following: Please, enter the length for MA and EWMA Filters 15 Please, enter the value for $B, 0<B<10.7$
If the user enters 15 for N and 0.7 for b , then the output plot will be as shown in figure 4-1.

Figure 4-1

